|
A diamond cut is a style or design guide used when shaping a diamond for polishing such as the brilliant cut. Cut does not refer to shape (pear, oval), but the symmetry, proportioning and polish of a diamond. The cut of a diamond greatly affects a diamond's brilliance; this means if it is cut poorly, it will be less luminous. In order to best use a diamond gemstone's material properties, a number of different diamond cuts have been developed. A diamond cut constitutes a more or less symmetrical arrangement of facets, which together modify the shape and appearance of a diamond crystal. Diamond cutters must consider several factors, such as the shape and size of the crystal, when choosing a cut. The practical history of diamond cuts can be traced back to the Middle Ages, while their theoretical basis was not developed until the turn of the 20th century. Design creation and innovation continue to the present day: new technology—notably laser cutting and computer-aided design—has enabled the development of cuts which complexity, optical performance, and waste reduction were hitherto unthinkable. The most popular of diamond cuts is the modern ''round brilliant'', which facet arrangements and proportions have been perfected by both mathematical and empirical analysis. Also popular are the ''fancy cuts'', which come in a variety of shapes—many of which were derived from the round brilliant. A diamond's cut is evaluated by trained graders, with higher grades given to stones whose symmetry and proportions most closely match the particular "ideal" used as a benchmark. The strictest standards are applied to the round brilliant; although its facet count is invariable, its proportions are not. Different countries base their cut grading on different ideals: one may speak of the ''American Standard'' or the ''Scandinavian Standard'' (''Scan. D.N.''), to give but two examples. ==History== The history of diamond cuts can be traced to the late Middle Ages, before which time diamonds were employed in their natural octahedral state—anhedral (poorly formed) diamonds simply were not used in jewelry. The first "improvements" on nature's design involved a simple polishing of the octahedral crystal faces to create even and unblemished facets, or to fashion the desired octahedral shape out of an otherwise unappealing piece of rough. This was called the ''point cut'' and dates from the mid 14th century; by 1375 there was a guild of diamond polishers at Nürnberg. By the mid 15th century, the point cut began to be improved upon: a little less than one half of the octahedron would be sawn off, creating the ''table cut''. The importance of a culet was also realised, and some table-cut stones may possess one. The addition of four corner facets created the ''old single cut'' (or old eight cut). Neither of these early cuts would reveal what diamond is prized for today; its strong dispersion or ''fire''. At the time, diamond was valued chiefly for its adamantine lustre and superlative hardness; a table-cut diamond would appear black to the eye, as they do in paintings of the era. For this reason, colored gemstones such as ruby and sapphire were far more popular in jewelry of the era. In or around 1476, Lodewyk (Louis) van Berquem, a Flemish polisher of Bruges, introduced the technique of absolute symmetry in the disposition of facets using a device of his own invention, the scaif. He cut stones in the shape known as ''pendeloque'' or ''briolette''; these were pear-shaped with triangular facets on both sides. About the middle of the 16th century, the ''rose'' or ''rosette'' was introduced in Antwerp: it also consisted of triangular facets arranged in a symmetrical radiating pattern, but with the bottom of the stone left flat—essentially a crown without a pavilion. Many large, famous Indian diamonds of old (such as the Orloff and Sancy) also feature a rose-like cut; there is some suggestion that Western cutters were influenced by Indian stones, because some of these diamonds may predate the Western adoption of the rose cut. However, Indian "rose cuts" were far less symmetrical as their cutters had the primary interest of conserving carat weight, due to the divine status of diamond in India. In either event, the rose cut continued to evolve, with its depth, number and arrangements of facets being tweaked. The first brilliant cuts were introduced in the middle of the 17th century. Known as ''Mazarins'', they had 17 facets on the crown (upper half). They are also called ''double-cut'' brilliants as they are seen as a step up from old single cuts. Vincent Peruzzi, a Venetian polisher, later increased the number of crown facets from 17 to 33 (''triple-cut'' or ''Peruzzi'' brilliants), thereby significantly increasing the fire and brilliance of the cut gem, properties that in the Mazarin were already incomparably better than in the rose. Yet Peruzzi-cut diamonds, when seen nowadays, seem exceedingly dull compared to modern-cut brilliants. Because the practice of bruting had not yet been developed, these early brilliants were all rounded squares or rectangles in cross-section (rather than circular). Given the general name of ''cushion''—what are known today as ''old mine cuts''—these were common by the early 18th century. Sometime later the ''old European cut'' was developed, which had a shallower pavilion, more rounded shape, and different arrangement of facets. The old European cut was the forerunner of modern brilliants and was the most advanced in use during the 19th century. Around 1900, the development of diamond saws and good jewelry lathes enabled the development of modern diamond cutting and diamond cuts, chief among them the ''round brilliant'' cut. In 1919, Marcel Tolkowsky analyzed this cut: his calculations took both ''brilliance'' (the amount of white light reflected) and fire into consideration, creating a delicate balance between the two. Tolkowsky's calculations would serve as the basis for all future brilliant cut modifications and standards. Tolkowsky's model of the "ideal" cut is not perfect. The original model served as a general guideline, and did not explore or account for several aspects of diamond cut: Because every facet has the potential to change a light ray's plane of travel, ''every facet must be considered in any complete calculation of light paths''. Another important point to consider is that Tolkowsky did not follow the path of a ray that was reflected more than twice in the diamond. However, we now know that a diamond's appearance is composed of many light paths that reflect considerably more than two times within that diamond. Once again, we can see that Tolkowsky's predictions are helpful in explaining optimal diamond performance, but they are incomplete by today's technological standards. Tolkowsky's guidelines, while revolutionary in their day, are not a definitive solution to the problem of finding the optimum proportions of a round brilliant cut diamond. In the 1970s, Bruce Harding developed another mathematical model for gem design. Since then, several groups have used computer models〔〔(【引用サイトリンク】title=Russian gemmological server )〕 and specialized scopes to design diamond cuts. The world's top diamond cutting and polishing center is India. It processes 11 out of 12 diamonds in jewelry worldwide. The sector employs 1.3 million people and accounts for 14% of India's $80 billion of annual exports. Its share in the world polished diamond market is 92% by pieces and 55% by value. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「diamond cut」の詳細全文を読む スポンサード リンク
|